

German / **English** Subject to change - 05.12.2022

Functional description

The application of one-component materials is carried out via the applicator. The material flow is controlled with the help of a needle valve, which is moved by means of pneumatic pressure to open or close the application nozzle. This allows precise control of the material application. The applicator is flange-fitted, which allows its flexible placement to suit process requirements: individually, directly on the dosing unit, on a robot or on a fixed unit (application tower).

Product characteristics

- ✓ Last component in the actual application process
- ✓ Stationary or robot-guided application
- ✓ Application of one-component materials
- Application of round beads
- ✓ Needle valve

General technical data

Unheated

Dimensions (WxDxH)	
Nozzle stock 80 mm	76,2 mm x 67,4 mm x 201,4 mm
Nozzle stock 125 mm	76,2 mm x 67,4 mm x 232 mm
Mass	0,6 kg
Operating voltage	-
Frequency	-
Power nozzle stock heating	-
Max. temperature	-
Application pressure	100 bar
Max. pressure	250 bar
Air supply	6 bar
Material connection	Flange; G1/8"
Air connection (pneumatic)	Hose diameter: 6 mm;
	Thread: M5
Housing material	AL, optional SS
Valve type	Needle valve
Nozzle diameter	0,5 - 2,5 mm

Heated

Dimensions (WxDxH)	
Nozzle stock 80 mm	76,2 mm x 67,4 mm x 192 mm
Nozzle stock 125 mm	76,2 mm x 67,4 mm x 232 mm
Mass	0,7 kg
Operating voltage	230 V
Frequency	50 Hz
Power nozzle stock heating	200 W
Max. temperature	100 Grad
Application pressure	100 bar
Max. pressure	250 bar
Air supply	6 bar
Material connection	Flange; G1/8"
Air connection (pneumatic)	Hose diameter 6 mm;
	Thread: M5
Housing material	AL, optional VA
Valve type	Needle valve
Nozzles diameter	0,5 - 2,5 mm

Ambient conditions / ambient temperature

Unheated

Storage and transport	0 - 75 °C
Operation	15 - 75 °C

Heated

Storage and transport	0 - 100 °C
Operation	15 - 100 °C

Applicable materials

PVC and other sealants
Silicones
Epoxy resins
Acrylates

Options and functional extensions

Heating of the applicators	
Variable configuration of nozzle lenght	
Variable configuration of nozzle diameter	
Stationary or robot-guided	
Extendable to a 2C-system	
Optional version in stainless steel	

Technical drawing

